Sistemi Intelligenti Avanzati
Corso di Laurea in Informatica, A.A. 2020-2021
Universita degli Studi di Milan

Search algorithms for planning

Matteo Luperto
Dipartimento di Informatica
matteo.luperto@unimi.it

Sistemi Intelligenti Avanzati, 2020/21 1

mailto:matteo.luperto@unimi.it

Search

Setting:
* Agent
* Goal

e Problem Formulation
e A Set of Actions
e A Set of States

What we want to do?
Find a set of actions that achieve the goal

when no single action will do

Planning

Setting:

* Agent

e Goal

AN

e Problem Formulation

* A Complex Set of Actions
* Preconditions
» Effects |

* A Complex Set of States
* Propositional Statements

What we want to do? ,

Take advantage of the structure of a problem

to construct complex plans of actions

Sistemi Intelligenti Avanzati, 2020/21 3

Search algorithms for Planning

* Search and Planning often addresses similar problems and there is
no clear distinction between them.

* On one hand, planning deals with more complex problems w.r.t.
describing actions, states, goals and when is difficult to provide a
proper problem formulation.

* As an example, if the conditions can change planning methods are
more suited to adapt the plan.

* On the other hand, search algorithms are often used where a it is
easier to describe the problem in a “mathematical” way.

e Overall, search and planning are deeply connected and overlapped,
and planning often requires some form of search and problem
solving algorithms.

e Path-planning is one of those problem.

Discrete Search Problems: 8-Puzzle

72| 4 1 2
5 §) 3| 4| 5
8 3 | 1 6 | 7 | 8

 States: location of each digits in the eight tiles + blank one
* Initial State

* Goal State

e Actions: Left, Right, Up, Down

* Transition: given a state and an action, the resulting board

Sistemi Intelligenti Avanzati, 2020/21 5

Discrete Search Problems: 8-Puzzle

72| 4 1 2
5 §) 3| 4| 5
8 3 | 1 6 | 7 | 8

Starl State Goal State

 States: location of each digits in the eight tiles + blank one
* Initial State

* Goal State

e Actions: Left, Right, Up, Down

* Transition: given a state and an action, the resulting board
* Goal Test: if the states are equal to the goal state

e Cost: each movement costs 1, the lowest number of tile move the
lowest the cost

Sistemi Intelligenti Avanzati, 2020/21 6

Search example 71214
5 6
8|31
7124 7124 7 4 7|2
5| 6 5| 6 5126 5 | 3
8 3|1 8|31 8|31 8

Expanding the current state by applying a legal action generating a
new set of states, then...

...following up one option and putting aside others in case the first
choice does not lead to a solution

Sistemi Intelligenti Avanzati, 2020/21 7

State-based problem formulation

e State space defined as a set of nodes, each node represents a state;
we assume a finite state space (and discrete)

e For each state, we have set of actions that can be undertaken by the agent from
that state

* Transition model: given a starting state and an action, indicates an arrival state;
we assume no uncertainties, i.e., deterministic transitions and full observability

e Action costs: any transition has a cost, which we assume to be greater than a
positive constant (reasonable assumption, useful for deriving some properties of
the algorithms we discuss)

* |nitial state

e Goal State

Compact representation: state transition graph G=(V,E)
(We will use “state” and “node” as interchangeable terms)

Formally describing the desired solution

* In the problem formulation we need to formally describe the features of the
solution we seek

* Two (three) classes of problems:

feasibility — optimality
—— B == B
@ = I EE ImpE él[l J]_ F— |-
L |E i

Eﬂi@ = ‘:Eiﬁrﬁ 2l
= h ==

/ (approximation) \ If at least a path to an
is there a path to exit exists, what is the

v an exit? one with the minimum
number of turns?

Set of goal states, find any

sequence of actions (path)

from the initial state to a
goal state

Set of goal states, find the
sequence of actions (path) from
the initial state to a goal state that
has the minimum cost

Problem example

Consider a agent moving on a graph-represented environment:
e States: nodes of the graph, they represent physical locations

* Edges: represent connections between nearby locations or, equivalently,
movement actions

* Initial state: some starting location for the agent
Desired solution:

* Goal state(s): some location(s) to reach, ...
Find a path to the initial location to a goal one

Example: going home from the CS department with METRO

g -y % 5:: N WMARINT T I e v % IV VWITuu 9 v é—; :;;: ﬁ B g
I |, via Vallaz2® - 1 $ “Milano Lambrate
Via Vallazze L | Lambrate FSID (¢
pcycle Milano :
8 @ Bike Cafe L ‘ Via,, a8
ttoria Bertameé o _ & e 9 s
I Pam Milano Bazzini g a, o, o <
" u a8 3 =3 Z
| s B AS
< Oasi Village @ ‘Mdogpc\ Z_ g !
2] - i pve @ :
g , Piazza Carlo 2 Mio
= Centro Teatro Attivo a s Donegani g
’_ﬁ Vietnamonamour 2 ' :
9/60 s Ristorante e B&B 8 S neTTerats Il Postino B
2 3 &)
< /G/’\S‘ v ® Carrefour Express 9 Q a
':: 0‘9&0 . Via Giuseppe Zanola ’ ‘f . - ¢ a8
3 a a Q Piola Milanosport - Centro ~ via Alfonso €O
g : Balneare Romano a
y 3 Avis Regionale 9 o QBimfucoo Lambrate Golgi
Supermercato 9 QMTM teatro Leonardo Lombardia 1
9 Carrefour Ngrket B Via Edosrdo Bonardi_ gy a a Via Corfi Q Trattoria Sole
W a8
{ . SRS : a Zero-Gravity 9
[% o)
R, . S — . ! o e
J;,,Or T ’ Politecnico Via Carlo Pasca
“h : - Piazza di Milano : !
o
& ‘ Leonardo 9 Crespi Sport Village
(| J—— o AT . 2 : e
3 Via Olindo Guerrini. 2, == = = d?YInCl Campo SPOI'TIV'O
. g = Mario Giuriati <
g 5] 9 a c
s ® 3
.= " MoBAMilano () B 9 W e
Hano a Universita Degli Studi 3
a8 9 Di Milano... g
QGrano e Caffe 1 3
5 5 Dipartimento di 9 g
- Informatica...
Fantamagus 9 7;
I 1 Fondazione IRCCS 9
Y 3 Istituto nazionale dei...
a 'n,,_/’/o g 9 MOGLYNET QIPSAR Am

Dipartime(Snnrale
Sistemi Intelligenti Avanzati, 2020/21 11

Example: going home from the CS department with METRO

e AR T T e v

g -y E_- g g TIVOTLE UWIvu 9 v ,é :,é_ X B é
E] = 2 8 \ B e . 1
[i via Valazz® s 1 P a ~Milano Lambrate
Via Vallazze ‘ Lambrate Fsﬂm L
a Upcycle Milano ‘ \
9 Bike Cafée < . la o a 1
ttoria Bertame Q ! 5 s Sou; < \
Pam Milano Bazzini e = O%%l/ o <
. » a8 3 =3 Z
g s 8
< Oasi Village @ pus® g— a]
2 : g Mio
- Centro Teatro Attivo &) ®
2 g
oL Vietnamonamour El
5 i Il Postino a8
% X 8 Ristorante e B&B Supermercato 9 -~
<% Carrefour Express Q
5 Sy a8 a
b \90 . iuseppe Zanola - B a
3 8 8 Q Eios Milanosport - Centro via Altonso Cf
§ Balneare Romano 5]
3 5
, &€ 9 B (Y sirificio Lambrate Golgi
Supermercato 9 i b
Carrefour Market Via Corfis Q Trattoria Sole
@ S
} Zero-Gravity 9
[‘//".9)
9”0,0 g s y Politecnico Via Carlo Pascal
“o, i Piaz i Mi L !
S ; leo?\azrgo di Milano 9 Crespi Sport Village
o N Re AN < i e 5 .
; Via Olindo Guerrini (733 —=-t - d?}{mcn Campo SPO!’(I\{O
. g = Mario Giuriati <
c [o
3 o O
g 3 EL o g
N al ¥ Q
v MOBA M:Iano@ a Universita Degli Studi 3
) 9 Di Milgno... 3
QGrano e Cgffe 1 o
1 . Dipartimento di 9 g
g Informatica...
3
Fantamagus Q o i
I s Fondazione IRCCS
Y 3 Istituto jnazionale dei...
a g LYNET @ PsarAm

Dipartime(Gnnale
Sistemi Intelligenti Avanzati, 2020/21

12

Example: going home from the CS department with METRO

Goal

Goal

Start

() ()
Sistemi Intelligenti Avanzati, 2020/21

13

Problem example

Consider a mobile robot moving on a grid environment:
» States: cells in the map, they represent physical locations

* Edges: represent connections between nearby locations or, equivalently,
movement actions

* Initial state: some starting location for the robot
Desired solution:
* Goal state(s): some location(s) to reach

* Find a path to the initial location to a goal one

Problem Example

operations: 709

Sistemi Intelligenti Avanzati, 2020/21 15

Problem Example 4

I1l l

!;ill - 81.18
| time: 1.1650ms
operations: 709

1

Sistemi Intelligenti Avanzati, 2020/21

16

A solution

' length:Bt_lrme
| time=3.0

operations: 709

Sistemi Intelligenti Avanzati, 2020/21

17

And here? Changing a few tiles, different solution

operatlons 770

Sistemi Intelligenti Avanzati, 2020/21 18

One problem, many representations

e

v 2 e v cy ’ 8
15 aliaz2 : : ' B *Milano Lambrate
Lambrate Fsmm

- 2 Jp v.“' e ..'”:A“‘J
° 9 s - gy L

Pam Milano Bazzini
i a8
- Opeilillana (on)

The quality of the solution and the choice of algorithms rely on a proper
problem formulation, with proper level of abstraction needed for the task
(not too many or too little details)

v -
VBalneare Romano A
B
Avis Reglonaleo B Wsirrificio Lambrate Golg
Supermercato Q QMTM teatro Leonardo Lombardia
Carrefour Market = Tratt
rrefour -ar T o Bonard_ g3 t =) '
a8 . A v
8 Zero-Gravity 9
Politecnico 1 Carlo Pasca
Piazza di Milano
ey 9 Crespi Sport Village
da Vinci Campo Sportivo

Mario Giuriati 8

OLLIOY 3|BIA

A B
- a8 Universita Degli Studi

8 - Q Di Milano..

o Dipartimento di Q
Informatica

Fantamagus o
: Fondazione IRCCS
Istituto nazionale dei 5
Q MOGLYNET QIPSAR Am

Dipartime(Gnnale

Sistemi Intelligenti Avanzati, 2020/21 22

One problem, many representations

- s gt Yo v = :
7 : G B Milano Lambrate
Lambrate FSED[Y) (
a8 \':, eycle Milano
Pt 9 ¥ Bike Cafée a8
ia Bertame @/ =)
Pam Milano Bazzini X
: a8
< Oasi Village @ a8
: Mio
Centro Teatro Attivo o
() Vietnam¢ -
¥ Ristorante g Il Postino a8
Gy Q) a
<)¢ b A"
s Ooy =) il ® ; B
I - Piol A ~ &
a a8 10 Milanosport - Centro
Balneare Romano a8
(._:_}"5|rr;firm Lambrate Golg
Supermercato 9 QMTM teatro Leonardo p
Carrefour Market Y Tratt
a8
Zero-Gravity 9
Politecnico) Carlo Pasca
Piazza di Milano -
<
5 venrardd Crespi Sport Village
o da Vinci Campo Sportivo
E Mario Giuriati I
10BA Milan a8 Q w Universita Degli Studi 3
8 & Di Milano.. ;
WGrano e cdffe Q =
& X
H Dipartimento di Q
Informatica..
Fantamagus o
Fondazione IRCCS
Istituto jnazionale dei. °
L MQBLYNET & PsaR Am

Dipartime(Gnnale

Sistemi Intelligenti Avanzati, 2020/21

~ What type of
' representation?
With which granularity?
Shall | represent other
nearby stations (Loreto,
Udine?)
* Shall | represent also the
bus stops?
e Trams?
* Main central stations?
* All Milan city map?
* Shall | represent all crossings
and traffic lights?
* How about directions inside
the campus?
* How about directions inside

the building?

23

One problem, many representations

g\ 4 TV 3 @
8 Milaijo Lambrate
II_LHI t}lult‘ ~ u
" W v
P4am Milgno Bazini U
8
— -,
Odsi Villgjge . A
s Hiazza (arlo Mig
eft b Donedani
ante elB&B \ &
Sopprmerdate ’:, 13|
(Jarrefofir Express
6 |) a
£) =
LS = rivia Q Tanosport - Centro
Bplnear¢ Romano A
:.:
Avis|Regiorjale Q a8
upermlercatol 0 @MT VI teatrjo Leonjardo fombafdia
LAl [ETOUT VIailKRE] v I~ f
B al BF
8 u &
= Zpro-Grgvity
Politecniqo
Pigzza di Miland
Leo ardo ISP Oopyit Viligy<T
. da Yinci Campo Spoytivo
= Matdio Ciudiati
BAM a V h Univeysita Digli Stydi
h O Di Mifano
) 4
k1 Dipjartimepto di Q
Ipformdtica
&)
anffamagys A
Forjdaziorje IRC(S Q
Stituto|naziorjale ae z C
a8 QM' GLYNET OEPS\R Am
DindrtimedT |

Sistemi Intelligenti Avanzati, 2020/21

What type of
representation?

Grid map?
How big the grid?
Which distance?

* Euclidean

* Manhattan

e ?
Shall | represent all crossings
and traffic lights?
How about directions inside
the campus? (different grid
size?)
How about directions inside
the building? (smaller?)

24

Problem specification

* How to specify a planning problem?

* First approach: provide the full state transition graph G (as in the previous

example)

* Most of the times this is not an affordable option due to the combinatorial
nature of the state space:

EALWHLAE
AABABAEAL

ddddddidid
ERoYWS 2 HE

Chess board: approx. 104 states

We can specify the initial state and the transition
function in some compact form (e.g., set of rules to
generate next states)

The planning problem “unfolds” as search progresses

* We need an efficient procedure for goal checking

General features of search algorithms

A search algorithm explores the state-transition graph G until it discovers the
desired solution

 feasibility: when a goal node is visited the path that led to that node is
returned R.0.B.0.T. Comics

» optimality: when a goal node is visited, if any other
possible path to that node has higher cost the path
that led to that node is returned

Given a state and the path followed to get there, the next node
to explore is chosen using a state strategy

"HIS PATH-PLANNING MAY BE

It does not suffice to visit a goal node, the algorithm has to SUB-OPTIMAL, BUT IT'S 60T FLAIR.”

reconstruct the path it followed to get there: it must keep
a trace of its search

Such a trace can be mapped to a subgraph of G, it is called search graph

Sistemi Intelligenti Avanzati, 2020/21 26

how to evaluate a (search) algorithm?

* We can evaluate a search algorithm along different dimensions

Completeness:
If there is a solution, is the algorithm guaranteed to find it?

* Systematic:
If the state space is finite, will the algorithm visit all reachable state
(so finding a solution if a solution exists?)

Optimality: does the strategy find an optimal solution?
Space complexity:

How much memory is needed to find a solution?

Time complexity?

How long does it takes?

(The above criteria can actually be used to evaluate a broader class of algorithms)

Soundness

* Optimality: does the returned solution lead to a goal with minimum cost?

Maybe we are not always looking for the optimal solution...

...for some problems, we may look for other features

Soundness: If the algorithm returns a solution, is it compliant with the desired
features specified in the problem formulation?

* Example:
* Feasibility: does the returned solution lead to a goal?
* Optimality: does the returned solution lead to a goal with minimum cost?

(We may need other features from the algorithm e.g., approximation)

Completeness and the systematic property

If a solution exists, does the algorithm find it?

» Typically shown by proving that the search will/will not visit all states if given
enough time - systematic

* If the state-space is finite, ensuring that no redundant exploration occurs is
sufficient to make the search systematic.
* If the state space is infinite, we can ask if the search is systematic:
* If there is a solution, the search algorithm must report it in finite time
* if the answer is no solution, it’s ok if it does not terminate but ...

... all reachable states must be visited in the limit: as time goes to infinity, all
states are visited — all reachable vertex is explored - (this definition is sound
under the assumption of countable state space)

Visual example

|

is there a
route from
IN to OUT?

o
j_lr IL
ALE
| -
T

Visual example

-my

Complete / Systematic

- 'Il_ -_I_-I_'L'|J|i
[R ===
= i esl
B 1 d ik M L
1= 4T alliHEE
I1—r == I1=S]=
1 | =1lIn —
[= =S E=n

» Searching along multiple trajectories (either concurrently or not), eventually covers all

the reachable space

Visual example

am)

n

Not complete / Not systematic

- 'Il_ -_I_-I_'L'|J|i
[R ===
= i esl
B 1 d ik M L
1= 4T alliHEE
a2 ([EE |
1 | =1 || === [F
[= =S E=n

» Searching along a single trajectory, eventually gets stuck in a dead end (or find a solution

if we are lucky)

Space and time complexity

* Space complexity: how does the amount of memory required by
the search algorithm grows as a function of the problem’s
dimension (worst case)?

* Time complexity: how does the time required by the search
algorithm grows as a function of the problem’s dimension (worst
case)?

 Asymptotic trend:
* We measure complexity with a function f(n) of the input size
* For analysis purposes, the “Big O” notation is convenient:

A function f(n) is O(g(n)) if k& > 0,ng such that f(n) < kg(n) for n > ng

* An algorithm thatis O(n?) is better than one that is O(n°)
 If g(n)is an exponential, the algorithm is not efficient

Sistemi Intelligenti Avanzati, 2020/21 33

Running example

* To present the various search algorithms, we will use this problem instance as our
running example

State-transition graph:

Initial state: @

Desired solution: any path to goal state @

* |t might be useful to think it as a map, but keep in mind that this interpretation does not
hold for every instance

Search algorithm definition

* The different search algorithms are substantially characterized by the answer they
provide to the following question:

° ° _____ , Given what | searched so far,
where to search next?

(search strategy)

 The answer is encoded in a set of rules that drives the search and define its type, let’s
start with the simplest one

Depth-First Search (DFS)

Depth-First Search (DFS)

Depth-First Search (DFS)

Depth-First Search (DFS)

Depth-First Search (DFS)

Depth-First Search (DFS)

A

/" \

B F
/" N\
®cC D

A Depth-First Search (DFS) chooses the deepest node in the search tree
(How to break ties? For now lexicographic order)

A dead end stopped the search, DFS seems not complete. Can we fix this?

Let’s endow our DFS with backtracking: a way to reconsider previously
evaluated decisions

Depth-First Search (DFS)

A

/" \

B F
/" N\
®cC D

A Depth-First Search (DFS) chooses the deepest node in the search tree
(How to break ties? For now lexicographic order)

A dead end stopped the search, DFS seems not complete. Can we fix this?

Let’s endow our DFS with backtracking: a way to reconsider previously
evaluated decisions

Depth-First Search (DFS)

A

/" \

B F
/" N\
®cC D

A Depth-First Search (DFS) chooses the deepest node in the search tree
(How to break ties? For now lexicographic order)

A dead end stopped the search, DFS seems not complete. Can we fix this?

Let’s endow our DFS with backtracking: a way to reconsider previously
evaluated decisions

Depth-First Search (DFS)

A

/" \

B F
/" N\
®cC D

A Depth-First Search (DFS) chooses the deepest node in the search tree
(How to break ties? For now lexicographic order)

A dead end stopped the search, DFS seems not complete. Can we fix this?

Let’s endow our DFS with backtracking: a way to reconsider previously
evaluated decisions

Depth-First Search (DFS)

A
/\ AN
B F B
/
N SN
®cC D ~C

A Depth-First Search (DFS) chooses the deepest node in the search tree
(How to break ties? For now lexicographic order)

A dead end stopped the search, DFS seems not complete. Can we fix this?

Let’s endow our DFS with backtracking: a way to reconsider previously
evaluated decisions

Depth-First Search (DFS)

A
/\ AN
B F B
/
N SN
®cC D ~C

A Depth-First Search (DFS) chooses the deepest node in the search tree
(How to break ties? For now lexicographic order)

A dead end stopped the search, DFS seems not complete. Can we fix this?

Let’s endow our DFS with backtracking: a way to reconsider previously
evaluated decisions

Depth-First Search (DFS)

* A Depth-First Search (DFS) chooses the deepest node in the search tree
(How to break ties? For now lexicographic order)

A dead end stopped the search, DFS seems not complete. Can we fix this?

* Let’s endow our DFS with backtracking: a way to reconsider previously
evaluated decisions

Depth-First Search (DFS)

A
/\ AN
B F B
/
N SN
®cC D ~C

F
A Depth-First Search (DFS) chooses the deepest node in the search tree
(How to break ties? For now lexicographic order) G
A dead end stopped the search, DFS seems not complete. Can we fix this?
©E

Let’s endow our DFS with backtracking: a way to reconsider previously
evaluated decisions

Solution: (A->B->D->F->G->E)

Depth-First Search (DFS) and Loops

* DFS with loops — non systematic / complete
* We are avoiding loops on the same branch
(loops are redundant paths)

Depth-First Search (DFS)
* DFS with loops removal and BT is sound and complete (for finite spaces)

e Call bthe maximum branching factor, i.e., the maximum number of actions
available in a state

* Call d the maximum depth of a solution, i.e., the maximum number of actions
in a path

* Space complexity: O(d)

* Time complexity: 1 + b+ b% + ... +b% = O(b?)

Breadth-First Search (BFS)

Breadth-First Search (BFS)

Breadth-First Search (BFS)

Breadth-First Search (BFS)

Breadth-First Search (BFS)

Breadth-First Search (BFS)

Breadth-First Search (BFS)

Breadth-First Search (BFS)

Breadth-First Search (BFS)

Solution: (A->F->G->E)

Sistemi Intelligenti Avanzati, 2020/21

59

Breadth-First Search (BFS)

A
/\F
B
PN N
®C D D G

Solution: (A->F->G->E)

* A Breadth-First Search (BFS) chooses the shallowest node, thus exploring in a level
by level fashion

* It has a more conservative behavior and does not need to reconsider decisions
* Call g the depth of the shallowest solution (in general ¢ < d)

* Space complexity: O(b7)

* Time complexity: O(b?)

Redundant paths

e Both DFS and BFS visited some nodes multiple times (avoiding loops prevents
this to happen only within the same branch)

* In general, this does not seem very efficient. Why? /\

B\ . F
N 7 F/' G
/\\\ ////\ Y
®&AC D \-\——/—/—/— D G /
\// \ / /
2% N NNV G
F” G ——-B-—-G7” D ©OE
©E

* |dea: discard a newly generated node if already present somewhere on the
tree, we can do this with an enqueued list

DFS with Enqueued List

DFS with Enqueued List

DFS with Enqueued List

DFS with Enqueued List

DFS with Enqueued List

DFS with Enqueued List

 Node F ha already been “enqueued”
on the tree, by discarding it we
prune a branch of the tree

DFS with Enqueued List

 Node F ha already been “enqueued”
on the tree, by discarding it we
prune a branch of the tree

DFS with Enqueued List

 Node F ha already been “enqueued”
on the tree, by discarding it we
prune a branch of the tree

BFS with Enqueued List

BFS with Enqueued List

BFS with Enqueued List

BFS with Enqueued List

BFS with Enqueued List

BFS with Enqueued List

BFS with Enqueued List

BFS with Enqueued List

Implementation

 The implementation of the previous algorithms is based on two data structures:
* A queue F (Frontier), elements ordered by priority, a selection consumes the
element with highest priority
« Alist EL (Enqueued List, nodes that have already been put on the tree)

* The frontier F contains the terminal nodes of all the paths currently under exploration on
the tree

A
B F //
/
/
\ /\ //
Y C D -7

-
-
-
-
N e ———

* The frontier separates the explored part of the state space from the unexplored part
* In order to reach a state that we still did not searched, we need to pass from the frontier
(separation property)

Implementation

If Fis implemented as a

LIFO (Last In First Out)
gueue we have a DFS

initialize F with the no select from F] .

starting node and extend If F is implemented a
FIFO (First In First Out)
qgueue we have a BFS

no any new <
path?
yes P
addto F]
solved <«—vyes
add to
enqueued list
The goal check is . L
performed as }
soon as a node is
already
generated enqueued? no

Sistemi Intelligenti Avanzati, 2026721 ’l discard]

Depth-limited Search

e Variant of DFS, trying to solve issues in “deep” or infinite state space
* ldea: limit the max number of depth search to a level [

* Nodes at level [are treated as if they have no successor

 Call gthe depth of the shallowest solution, how do we set [?

* What if we choose [> d? Non-optimal

* Time complexity: 0(b")
* Space complexity: O(bl)

Iterative-deepening DFS

e Variant of DFS and similar to depth-limited search
* Idea: limit the max number of depth search to a level [, increasing [
* Nodes at level [are treated as if they have no successor

 We start with [= 0, if no solution is found increase [= [+ 1 until a solution is found
 Complete in finite spaces

« Space complexity: O(b?)
* Time complexity: O(bq)

Informed vs non-informed search

e We can enrich DFS and BFS to obtain their an informed versions

* Both search methods break ties in lexicographical order, but it seems reasonable to do
that in favor of nodes that are believed to be closer to the goal

* Hill climbing
A DFS where ties are broken in favor the node with smallest h

 Beam (of width w)
A BFS where at each level we keep the first w nodes in increasing order of h

Search for the optimal solution

Now we assume to be interested in the solution with minimum cost (not just any
path to the goal, but the cheapest possible)

To devise an optimal search algorithm we take the moves from BFS. Why it seems
reasonable to do that?

We generalize the idea of BFS to that of Uniform Cost Search (UCS)

BFS proceeds by depth levels, UCS does that by cost levels (as a consequence, if costs
are all equal to some constant BFS and UCS coincide)

Cost accumulated on a path from the start node tov: g(v) (we should include a
dependency on the path, but it will always be clear from the context)

For now let’s remove the enqueued list and the goal checking as we know it

Uniform Cost Search (UCS)

Uniform Cost Search (UCS)

0A

Uniform Cost Search (UCS)

0A

6 F

Uniform Cost Search (UCS)

12C 8D

Uniform Cost Search (UCS)

12C 8D 9D 11@G

Uniform Cost Search (UCS)

12C 8D 9D 11@G

Uniform Cost Search (UCS)

9D 11@G

A\

11 F 12G 12B 113G

N N
N\

Uniform Cost Search (UCS)

Uniform Cost Search (UCS)

Uniform Cost Search (UCS)

0A
5B 6F
/\ /\
12C 8D 9D 11G

Sistemi Intelligenti Avanzati, 2020/21 93

Uniform Cost Search (UCS)

/\
PN TN

Sistemi Intelligenti Avanzati, 2020/21 94

Uniform Cost Search (UCS)

/\
PN TN

16G 15E 19C

Sistemi Intelligenti Avanzati, 2020/21 95

Uniform Cost Search (UCS)

/\
PN TN

11 F 12G 12B 13G 15D 14E

o

16G 15E 19C 16E

Sistemi Intelligenti Avanzati, 2020/21 96

Uniform Cost Search (UCS)

/\
PN TN

11 F 12G 12B 13G 15D 14

16G 15E 19C 16E

E
©

Sistemi Intelligenti Avanzati, 2020/21 97

Uniform Cost Search (UCS)

/\
PN TN

E
©

11 F 12G 12B 13G 15D 14

.

16G 15E 19C 16E

* Have we found the optimal path to the goal? In this problem instance, we can answer
yes by inspecting the graph

 How about larger instances? Can we prove optimality?

e Actually, we can prove a stronger claim: every time UCS selects for the first time a node
for expansion, the associated path leading to that node has minimum cost

Optimality of UCS

Hypotheses:

1. UCS selects from the frontier a node V that has
been generated through a path p

2. pisnotthe optimal pathtoV

Frontier

Given 2 and the frontier separation property, we

.
. .
""""""
. .

know that there must exist a node X on the frontier, " K
generated through a path p’; that is on the optimal \\ -
path p’#p to V; let assume p’ = p’; + p/, “”pé

c(p') = c(p) + c(py) < ¢(p) since, from Hp, p’ is optimal

/

c(ph) < c(ph) + c(ps) < ce(p) since costs are positive

c(p}) < ¢(p) X would have been chosen before V, then 1 is false

Sistemi Intelligenti Avanzati, 2020/21 99

Optimality of UCS

If when we select for the first time we discover the optimal path, there is no reason to
select the same node a second time: extended list

Every time we select a node for extension:
e If the node is already in the extended list we discard it
* Otherwise we extend it and we put it the extended list

* (Warning: we are not using an enqueued list, it would actually make the search not
sound!)

UCS with extended list

UCS with extended list

0A

UCS with extended list

0A

6 F

UCS with extended list

12C 8D

UCS with extended list

12C 8D 9D 11G

UCS with extended list

12C 8D 9D 11G

UCS with extended list

12C 8D 9D 11G

UCS with extended list

12C 8D 9D 11G

UCS with extended list

UCS with extended list

0A

6 F

5B

11@G
7\

15D

9D

14 E

112G

11 F

UCS with extended list

UCS with extended list

O /\
/\ %\

12C 11 G
®
%1@% /.
11 F 12@G 15D 14E
@

* Thanks to the extended list we can prune two branches

Implementation

initialize F with the]
starting node J

»{_ F empty? no%[select from F]

discard

add all new

F is implemented as a
cost-sorted (increasing)
list queue

paths to F

A

extend, add to
extended list

solved

The goal check is done when
the node is selected (not
when is generated)

e (Question: is this search informed?

Sistemi Intelligenti Avanzati, 2020/21

113

Summing up

b branching factor,
q depth of the shallowest solution,
m maximum depth of search tree,

[depth limit
Criterion BFS UCS DFS Limited DFS Iterative DFS
Complete? Yes Yes No No Yes
(if b finite) (if b finite (only for (l>q) (if b finite)

and cost finite spaces)

positive)
Time com. 0(b?) O(b1*lc /el o(b™) 0(bYH 0(b?)
Space com. 0(b?) O(b1*lc /el 0(bm) 0(bl) 0(bq)
Optimal? Yes (identical | Yes No No Yes (identical

costs)

costs)

Sistemi Intelligenti Avanzati, 2020/21

114

